Metamath Proof Explorer


Theorem trlcl

Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trlcl.b 𝐵 = ( Base ‘ 𝐾 )
trlcl.h 𝐻 = ( LHyp ‘ 𝐾 )
trlcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlcl.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 trlcl.b 𝐵 = ( Base ‘ 𝐾 )
2 trlcl.h 𝐻 = ( LHyp ‘ 𝐾 )
3 trlcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 trlcl.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
7 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
8 5 6 7 2 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) )
9 8 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) )
10 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
11 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
12 5 10 11 7 2 3 4 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
13 9 12 mpd3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
14 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
15 14 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐾 ∈ Lat )
16 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
17 16 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐾 ∈ OP )
18 1 2 lhpbase ( 𝑊𝐻𝑊𝐵 )
19 18 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝑊𝐵 )
20 1 6 opoccl ( ( 𝐾 ∈ OP ∧ 𝑊𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 )
21 17 19 20 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 )
22 1 2 3 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐵 )
23 21 22 mpd3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐵 )
24 1 10 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ 𝐵 )
25 15 21 23 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ 𝐵 )
26 1 11 latmcl ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∈ 𝐵𝑊𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
27 15 25 19 26 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
28 13 27 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ 𝐵 )