Step |
Hyp |
Ref |
Expression |
1 |
|
trlcnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
trlcnv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
trlcnv.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
4 5 1
|
lhpexnle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
10 |
9
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
11 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
12 |
8 5
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
15 |
10 13 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
16 |
15
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) ) = ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) ) |
17 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL ) |
18 |
4 5 1 2
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
19 |
18
|
3adant3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
20 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
21 |
20 5
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ) |
22 |
17 19 11 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ) |
23 |
16 22
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) ) = ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
25 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ◡ 𝐹 ∈ 𝑇 ) |
28 |
4 5 1 2
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
29 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
30 |
4 20 29 5 1 2 3
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ◡ 𝐹 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
31 |
25 27 28 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( ( ( 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
32 |
4 20 29 5 1 2 3
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
33 |
24 31 32
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
34 |
33
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |
35 |
7 34
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ ◡ 𝐹 ) = ( 𝑅 ‘ 𝐹 ) ) |