Metamath Proof Explorer


Theorem trlf1

Description: The enumeration F of a trail <. F , P >. is injective. (Contributed by AV, 20-Feb-2021) (Proof shortened by AV, 29-Oct-2021)

Ref Expression
Hypothesis trlf1.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion trlf1 ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 )

Proof

Step Hyp Ref Expression
1 trlf1.i 𝐼 = ( iEdg ‘ 𝐺 )
2 istrl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 ) )
3 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
4 wrdf ( 𝐹 ∈ Word dom 𝐼𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 )
5 df-f1 ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun 𝐹 ) )
6 5 simplbi2 ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( Fun 𝐹𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) )
7 3 4 6 3syl ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun 𝐹𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) )
8 7 imp ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 )
9 2 8 sylbi ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 )