Step |
Hyp |
Ref |
Expression |
1 |
|
trlf1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
istrl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) |
3 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
4 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
5 |
|
df-f1 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
6 |
5
|
simplbi2 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( Fun ◡ 𝐹 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
7 |
3 4 6
|
3syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun ◡ 𝐹 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
8 |
7
|
imp |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
9 |
2 8
|
sylbi |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |