Step |
Hyp |
Ref |
Expression |
1 |
|
trlid0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlid0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
trlid0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
trlid0.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
5 6 3
|
lhpexnle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
8 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) |
10 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 3 10
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) |
14 |
1 5 6 3 10
|
ltrnideq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ↔ ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) ) |
15 |
8 12 9 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ↔ ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) ) |
16 |
13 15
|
mpbii |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) |
17 |
5 2 6 3 10 4
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ∧ ( ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = 0 ) |
18 |
8 9 12 16 17
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = 0 ) |
19 |
7 18
|
rexlimddv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = 0 ) |