Metamath Proof Explorer


Theorem trljat3

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trljat.l = ( le ‘ 𝐾 )
trljat.j = ( join ‘ 𝐾 )
trljat.a 𝐴 = ( Atoms ‘ 𝐾 )
trljat.h 𝐻 = ( LHyp ‘ 𝐾 )
trljat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trljat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trljat3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 trljat.l = ( le ‘ 𝐾 )
2 trljat.j = ( join ‘ 𝐾 )
3 trljat.a 𝐴 = ( Atoms ‘ 𝐾 )
4 trljat.h 𝐻 = ( LHyp ‘ 𝐾 )
5 trljat.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 trljat.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 trljat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
8 1 2 3 4 5 6 trljat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
9 7 8 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) )