Metamath Proof Explorer


Theorem trlnle

Description: The atom not under the fiducial co-atom W is not less than the trace of a lattice translation. Part of proof of Lemma C in Crawley p. 112. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses trlne.l = ( le ‘ 𝐾 )
trlne.a 𝐴 = ( Atoms ‘ 𝐾 )
trlne.h 𝐻 = ( LHyp ‘ 𝐾 )
trlne.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlne.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlnle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ¬ 𝑃 ( 𝑅𝐹 ) )

Proof

Step Hyp Ref Expression
1 trlne.l = ( le ‘ 𝐾 )
2 trlne.a 𝐴 = ( Atoms ‘ 𝐾 )
3 trlne.h 𝐻 = ( LHyp ‘ 𝐾 )
4 trlne.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 trlne.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐾 ∈ HL )
7 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
8 6 7 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐾 ∈ AtLat )
9 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝑃𝐴 )
10 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
11 1 10 2 atnle0 ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → ¬ 𝑃 ( 0. ‘ 𝐾 ) )
12 8 9 11 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ¬ 𝑃 ( 0. ‘ 𝐾 ) )
13 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → 𝐹𝑇 )
16 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝐹𝑃 ) = 𝑃 )
17 1 10 2 3 4 5 trl0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑃 ) ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
18 13 14 15 16 17 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑅𝐹 ) = ( 0. ‘ 𝐾 ) )
19 18 breq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ( 𝑃 ( 𝑅𝐹 ) ↔ 𝑃 ( 0. ‘ 𝐾 ) ) )
20 12 19 mtbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑃 ) → ¬ 𝑃 ( 𝑅𝐹 ) )
21 1 2 3 4 5 trlne ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝑃 ≠ ( 𝑅𝐹 ) )
22 21 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝑃 ≠ ( 𝑅𝐹 ) )
23 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ HL )
24 23 7 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ AtLat )
25 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝑃𝐴 )
26 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
28 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → 𝐹𝑇 )
29 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝐹𝑃 ) ≠ 𝑃 )
30 1 2 3 4 5 trlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) ) → ( 𝑅𝐹 ) ∈ 𝐴 )
31 26 27 28 29 30 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( 𝑅𝐹 ) ∈ 𝐴 )
32 1 2 atncmp ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ∧ ( 𝑅𝐹 ) ∈ 𝐴 ) → ( ¬ 𝑃 ( 𝑅𝐹 ) ↔ 𝑃 ≠ ( 𝑅𝐹 ) ) )
33 24 25 31 32 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ( ¬ 𝑃 ( 𝑅𝐹 ) ↔ 𝑃 ≠ ( 𝑅𝐹 ) ) )
34 22 33 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) ≠ 𝑃 ) → ¬ 𝑃 ( 𝑅𝐹 ) )
35 20 34 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ¬ 𝑃 ( 𝑅𝐹 ) )