Metamath Proof Explorer


Theorem trlontrl

Description: A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021)

Ref Expression
Assertion trlontrl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( ( 𝑃 ‘ 0 ) ( TrailsOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 )

Proof

Step Hyp Ref Expression
1 trliswlk ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
2 wlkonwlk ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 )
3 1 2 syl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 )
4 id ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 )
5 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
6 5 wlkepvtx ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) )
7 wlkv ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) )
8 3simpc ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) )
9 8 anim2i ( ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )
10 6 7 9 syl2anc ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )
11 1 10 syl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) )
12 5 istrlson ( ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( ( 𝑃 ‘ 0 ) ( TrailsOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 ↔ ( 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) )
13 11 12 syl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝐹 ( ( 𝑃 ‘ 0 ) ( TrailsOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 ↔ ( 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) )
14 3 4 13 mpbir2and ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃𝐹 ( ( 𝑃 ‘ 0 ) ( TrailsOn ‘ 𝐺 ) ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) 𝑃 )