Step |
Hyp |
Ref |
Expression |
1 |
|
trlres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
trlres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlres.d |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
4 |
|
trlres.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
trlres.h |
⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) |
6 |
|
trlres.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
7 |
|
trlres.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
8 |
|
trlres.q |
⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) |
9 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
11 |
1 2 10 4 6 7 5 8
|
wlkres |
⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |
12 |
1 2 3 4 5
|
trlreslem |
⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
13 |
|
f1of1 |
⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
14 |
|
df-f1 |
⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∧ Fun ◡ 𝐻 ) ) |
15 |
14
|
simprbi |
⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) → Fun ◡ 𝐻 ) |
16 |
12 13 15
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝐻 ) |
17 |
|
istrl |
⊢ ( 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ∧ Fun ◡ 𝐻 ) ) |
18 |
11 16 17
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |