| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trlres.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | trlres.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | trlres.d | ⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | trlres.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 |  | trlres.h | ⊢ 𝐻  =  ( 𝐹  prefix  𝑁 ) | 
						
							| 6 |  | trlres.s | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
						
							| 7 |  | trlres.e | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 8 |  | trlres.q | ⊢ 𝑄  =  ( 𝑃  ↾  ( 0 ... 𝑁 ) ) | 
						
							| 9 |  | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 11 | 1 2 10 4 6 7 5 8 | wlkres | ⊢ ( 𝜑  →  𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) | 
						
							| 12 | 1 2 3 4 5 | trlreslem | ⊢ ( 𝜑  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 13 |  | f1of1 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) )  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 14 |  | df-f1 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) )  ↔  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) )  ∧  Fun  ◡ 𝐻 ) ) | 
						
							| 15 | 14 | simprbi | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1→ dom  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) )  →  Fun  ◡ 𝐻 ) | 
						
							| 16 | 12 13 15 | 3syl | ⊢ ( 𝜑  →  Fun  ◡ 𝐻 ) | 
						
							| 17 |  | istrl | ⊢ ( 𝐻 ( Trails ‘ 𝑆 ) 𝑄  ↔  ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄  ∧  Fun  ◡ 𝐻 ) ) | 
						
							| 18 | 11 16 17 | sylanbrc | ⊢ ( 𝜑  →  𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |