Step |
Hyp |
Ref |
Expression |
1 |
|
trlres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
trlres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlres.d |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
4 |
|
trlres.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
trlres.h |
⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) |
6 |
2
|
trlf1 |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
8 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
9 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
10 |
4 8 9
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
11 |
|
f1ores |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
12 |
7 10 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
13 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
14 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
15 |
3 13 14
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
16 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
17 |
16 4
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
18 |
|
pfxres |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
19 |
15 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
20 |
5 19
|
eqtrid |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
21 |
5
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) |
22 |
|
elfzofz |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
24 |
|
pfxlen |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
25 |
15 23 24
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
26 |
21 25
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
28 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
29 |
|
fimass |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
30 |
14 28 29
|
3syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
31 |
3 13 30
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
32 |
|
ssdmres |
⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
33 |
31 32
|
sylib |
⊢ ( 𝜑 → dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
34 |
20 27 33
|
f1oeq123d |
⊢ ( 𝜑 → ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
35 |
12 34
|
mpbird |
⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –1-1-onto→ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |