Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
trlsegvdeg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
trlsegvdeg.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
trlsegvdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
trlsegvdeg.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
trlsegvdeg.w |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
7 |
|
trlsegvdeg.vx |
⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) |
8 |
|
trlsegvdeg.vy |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
9 |
|
trlsegvdeg.vz |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) |
10 |
|
trlsegvdeg.ix |
⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
11 |
|
trlsegvdeg.iy |
⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
12 |
|
trlsegvdeg.iz |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) |
13 |
|
eqid |
⊢ ( iEdg ‘ 𝑋 ) = ( iEdg ‘ 𝑋 ) |
14 |
|
eqid |
⊢ ( iEdg ‘ 𝑌 ) = ( iEdg ‘ 𝑌 ) |
15 |
|
eqid |
⊢ ( Vtx ‘ 𝑋 ) = ( Vtx ‘ 𝑋 ) |
16 |
8 7
|
eqtr4d |
⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = ( Vtx ‘ 𝑋 ) ) |
17 |
9 7
|
eqtr4d |
⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = ( Vtx ‘ 𝑋 ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem4 |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem5 |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) = { ( 𝐹 ‘ 𝑁 ) } ) |
20 |
18 19
|
ineq12d |
⊢ ( 𝜑 → ( dom ( iEdg ‘ 𝑋 ) ∩ dom ( iEdg ‘ 𝑌 ) ) = ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) ) |
21 |
|
fzonel |
⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) |
22 |
2
|
trlf1 |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
24 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
25 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
26 |
4 24 25
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
27 |
|
f1elima |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
28 |
23 4 26 27
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
29 |
21 28
|
mtbiri |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
30 |
29
|
orcd |
⊢ ( 𝜑 → ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
31 |
|
ianor |
⊢ ( ¬ ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ↔ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
32 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
33 |
31 32
|
xchnxbir |
⊢ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ↔ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
34 |
30 33
|
sylibr |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
35 |
|
disjsn |
⊢ ( ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) = ∅ ↔ ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝜑 → ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) = ∅ ) |
37 |
20 36
|
eqtrd |
⊢ ( 𝜑 → ( dom ( iEdg ‘ 𝑋 ) ∩ dom ( iEdg ‘ 𝑌 ) ) = ∅ ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem2 |
⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑋 ) ) |
39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem3 |
⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑌 ) ) |
40 |
5 7
|
eleqtrrd |
⊢ ( 𝜑 → 𝑈 ∈ ( Vtx ‘ 𝑋 ) ) |
41 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
42 |
6 22 41
|
3syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
43 |
3 42 4
|
resunimafz0 |
⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
44 |
10 11
|
uneq12d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑋 ) ∪ ( iEdg ‘ 𝑌 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
45 |
43 12 44
|
3eqtr4d |
⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( ( iEdg ‘ 𝑋 ) ∪ ( iEdg ‘ 𝑌 ) ) ) |
46 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem6 |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) ∈ Fin ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem7 |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) ∈ Fin ) |
48 |
13 14 15 16 17 37 38 39 40 45 46 47
|
vtxdfiun |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |