Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020) (Revised by AV, 29-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | trlsfval | ⊢ ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | ⊢ ( ( ⊤ ∧ 𝑔 = 𝐺 ) → ( Fun ◡ 𝑓 ↔ Fun ◡ 𝑓 ) ) | |
2 | wksv | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V | |
3 | 2 | a1i | ⊢ ( ⊤ → { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V ) |
4 | df-trls | ⊢ Trails = ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ Fun ◡ 𝑓 ) } ) | |
5 | 1 3 4 | fvmptopab | ⊢ ( ⊤ → ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } ) |
6 | 5 | mptru | ⊢ ( Trails ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun ◡ 𝑓 ) } |