Metamath Proof Explorer


Theorem trlsfval

Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion trlsfval ( Trails ‘ 𝐺 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun 𝑓 ) }

Proof

Step Hyp Ref Expression
1 biidd ( ( ⊤ ∧ 𝑔 = 𝐺 ) → ( Fun 𝑓 ↔ Fun 𝑓 ) )
2 wksv { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V
3 2 a1i ( ⊤ → { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V )
4 df-trls Trails = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ Fun 𝑓 ) } )
5 1 3 4 fvmptopab ( ⊤ → ( Trails ‘ 𝐺 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun 𝑓 ) } )
6 5 mptru ( Trails ‘ 𝐺 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ Fun 𝑓 ) }