Step |
Hyp |
Ref |
Expression |
1 |
|
trlsonfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
1vgrex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ V ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
4 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
5 |
4 1
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
7 |
6 1
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
8 |
|
wksv |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V ) |
10 |
|
trliswlk |
⊢ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
12 |
|
df-trlson |
⊢ TrailsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( WalksOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ) } ) ) |
13 |
3 5 7 9 11 12
|
mptmpoopabovd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ) } ) |