Step |
Hyp |
Ref |
Expression |
1 |
|
trlsonfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
istrlson |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
3 |
2
|
3adantl1 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
4 |
|
df-trlson |
⊢ TrailsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( WalksOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ) } ) ) |
5 |
|
trliswlk |
⊢ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
7 |
1 3 4 6
|
wksonproplem |
⊢ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |