Step |
Hyp |
Ref |
Expression |
1 |
|
trlset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
trlset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
trlset.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
trlset.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
trlset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
trlset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
trlset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
trlset.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 4 5 6 7 8
|
trlset |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝑅 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ) |
10 |
9
|
fveq1d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ‘ 𝐹 ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑝 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) = ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ↔ 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ↔ ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
17 |
16
|
riotabidv |
⊢ ( 𝑓 = 𝐹 → ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
18 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
19 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ∈ V |
20 |
17 18 19
|
fvmpt |
⊢ ( 𝐹 ∈ 𝑇 → ( ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝑓 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) ‘ 𝐹 ) = ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |
21 |
10 20
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) = ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → 𝑥 = ( ( 𝑝 ∨ ( 𝐹 ‘ 𝑝 ) ) ∧ 𝑊 ) ) ) ) |