Step |
Hyp |
Ref |
Expression |
1 |
|
trlval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlval2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlval2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
trlval2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
trlval2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
trlval2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
trlval2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
9 |
8
|
anim1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 1 2 3 4 5 6 7
|
trlval |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
12 |
11
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
13 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
14 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
15 |
10 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
17 |
10 5 6
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
16 17
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
10 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
13 16 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
22 |
10 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
24 |
10 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
13 20 23 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ∈ 𝐴 ) |
27 |
|
simpl3r |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ¬ 𝑃 ≤ 𝑊 ) |
28 |
|
breq1 |
⊢ ( 𝑞 = 𝑃 → ( 𝑞 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊 ) ) |
29 |
28
|
notbid |
⊢ ( 𝑞 = 𝑃 → ( ¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊 ) ) |
30 |
|
id |
⊢ ( 𝑞 = 𝑃 → 𝑞 = 𝑃 ) |
31 |
|
fveq2 |
⊢ ( 𝑞 = 𝑃 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑃 ) ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑞 = 𝑃 → ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝑞 = 𝑃 → ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑞 = 𝑃 → ( 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ↔ 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
35 |
29 34
|
imbi12d |
⊢ ( 𝑞 = 𝑃 → ( ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ↔ ( ¬ 𝑃 ≤ 𝑊 → 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
36 |
35
|
rspcv |
⊢ ( 𝑃 ∈ 𝐴 → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) → ( ¬ 𝑃 ≤ 𝑊 → 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
37 |
36
|
com23 |
⊢ ( 𝑃 ∈ 𝐴 → ( ¬ 𝑃 ≤ 𝑊 → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) → 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) ) |
38 |
26 27 37
|
sylc |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) → 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
39 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ) |
40 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → 𝐹 ∈ 𝑇 ) |
41 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
42 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → ¬ 𝑃 ≤ 𝑊 ) |
43 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
44 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → ¬ 𝑞 ≤ 𝑊 ) |
45 |
1 2 3 4 5 6
|
ltrnu |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) |
46 |
39 40 41 42 43 44 45
|
syl222anc |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) |
47 |
|
eqeq2 |
⊢ ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ↔ 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
48 |
47
|
biimpd |
⊢ ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
49 |
46 48
|
syl |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑞 ∈ 𝐴 ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) |
50 |
49
|
3exp |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ¬ 𝑞 ≤ 𝑊 → ( 𝑞 ∈ 𝐴 → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) ) |
51 |
50
|
com24 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → ( 𝑞 ∈ 𝐴 → ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) ) |
52 |
51
|
ralrimdv |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) → ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) ) |
54 |
38 53
|
impbid |
⊢ ( ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ↔ 𝑥 = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
55 |
25 54
|
riota5 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 → 𝑥 = ( ( 𝑞 ∨ ( 𝐹 ‘ 𝑞 ) ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
56 |
12 55
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
57 |
9 56
|
syl3an1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |