Step |
Hyp |
Ref |
Expression |
1 |
|
trlval3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlval3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlval3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
trlval3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
trlval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
trlval3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
trlval3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
10 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
12 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
13 |
1 12 4 5 6 7
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
14 |
8 9 10 11 13
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
15 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
16 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ HL ) |
17 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ AtLat ) |
19 |
11
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑃 ∨ 𝑃 ) ) |
20 |
|
simp31l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ∈ 𝐴 ) |
22 |
2 4
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
23 |
16 21 22
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
24 |
19 23
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = 𝑃 ) |
25 |
24 21
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) |
26 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
27 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
28 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
29 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
30 |
1 4 5 6
|
ltrn2ateq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) = 𝑃 ↔ ( 𝐹 ‘ 𝑄 ) = 𝑄 ) ) |
31 |
26 27 28 29 30
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) = 𝑃 ↔ ( 𝐹 ‘ 𝑄 ) = 𝑄 ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = 𝑄 ) |
33 |
32
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ 𝑄 ) ) |
34 |
|
simp32l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑄 ∈ 𝐴 ) |
36 |
2 4
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
37 |
16 35 36
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
38 |
33 37
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) = 𝑄 ) |
39 |
38 35
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ 𝐴 ) |
40 |
3 12 4
|
atnem0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ 𝐴 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ↔ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
41 |
18 25 39 40
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ↔ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
42 |
15 41
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) |
43 |
14 42
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
44 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
45 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐹 ∈ 𝑇 ) |
46 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
47 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
49 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ HL ) |
50 |
49
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ Lat ) |
51 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑃 ∈ 𝐴 ) |
52 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
53 |
44 45 51 52
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
54 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
55 |
54 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
49 51 53 55
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑊 ∈ 𝐻 ) |
58 |
54 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
59 |
57 58
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
60 |
54 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
61 |
50 56 59 60
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
62 |
48 61
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
63 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
64 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
65 |
44 45 63 64
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
66 |
34
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝑄 ∈ 𝐴 ) |
67 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
68 |
44 45 66 67
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
69 |
54 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
70 |
49 66 68 69
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
71 |
54 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
72 |
50 70 59 71
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
73 |
65 72
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
74 |
54 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
75 |
44 45 74
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
76 |
54 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ↔ ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ) |
77 |
50 75 56 70 76
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ↔ ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ) |
78 |
62 73 77
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
79 |
49 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → 𝐾 ∈ AtLat ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
81 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
82 |
44 46 45 80 81
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
83 |
54 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
84 |
50 56 70 83
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
85 |
54 1 12 4
|
atlen0 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ∧ ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
86 |
79 84 82 78 85
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
87 |
86
|
neneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ¬ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) |
88 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
89 |
2 3 12 4
|
2atmat0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
90 |
49 51 53 66 68 88 89
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ 𝐴 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
91 |
90
|
ord |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ¬ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ 𝐴 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
92 |
87 91
|
mt3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ 𝐴 ) |
93 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∈ 𝐴 ) → ( ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ↔ ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ) |
94 |
79 82 92 93
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ↔ ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ) |
95 |
78 94
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
96 |
43 95
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |