Step |
Hyp |
Ref |
Expression |
1 |
|
trlval3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlval3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlval3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
trlval3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
trlval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
trlval3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
trlval3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
9 |
1 2 4 5 6 7
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
11 |
8 10
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ 𝑊 ) ) |