Metamath Proof Explorer


Theorem trlval5

Description: The value of the trace of a lattice translation in terms of itself. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses trlval3.l = ( le ‘ 𝐾 )
trlval3.j = ( join ‘ 𝐾 )
trlval3.m = ( meet ‘ 𝐾 )
trlval3.a 𝐴 = ( Atoms ‘ 𝐾 )
trlval3.h 𝐻 = ( LHyp ‘ 𝐾 )
trlval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
trlval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion trlval5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝑅𝐹 ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 trlval3.l = ( le ‘ 𝐾 )
2 trlval3.j = ( join ‘ 𝐾 )
3 trlval3.m = ( meet ‘ 𝐾 )
4 trlval3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 trlval3.h 𝐻 = ( LHyp ‘ 𝐾 )
6 trlval3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 trlval3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )
9 1 2 4 5 6 7 trljat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
10 9 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑃 ( 𝑅𝐹 ) ) 𝑊 ) = ( ( 𝑃 ( 𝐹𝑃 ) ) 𝑊 ) )
11 8 10 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑃 ( 𝑅𝐹 ) ) 𝑊 ) )