| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  →  𝐽  ∈  Top ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝐴  ⊆  𝑌 ) | 
						
							| 4 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  →  𝑌  =  ∪  𝐽 ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝑌  =  ∪  𝐽 ) | 
						
							| 6 | 3 5 | sseqtrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝐴  ⊆  ∪  𝐽 ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝑃  ∈  𝑌 ) | 
						
							| 8 | 7 5 | eleqtrd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 9 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 10 | 9 | neindisj2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  ∪  𝐽  ∧  𝑃  ∈  ∪  𝐽 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ↔  ∀ 𝑣  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 11 | 2 6 8 10 | syl3anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ↔  ∀ 𝑣  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 12 |  | simp1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  𝐽  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 13 | 7 | snssd | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  { 𝑃 }  ⊆  𝑌 ) | 
						
							| 14 |  | snnzg | ⊢ ( 𝑃  ∈  𝑌  →  { 𝑃 }  ≠  ∅ ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  { 𝑃 }  ≠  ∅ ) | 
						
							| 16 |  | neifil | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  { 𝑃 }  ⊆  𝑌  ∧  { 𝑃 }  ≠  ∅ )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 18 |  | trfil2 | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ∈  ( Fil ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌 )  →  ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↾t  𝐴 )  ∈  ( Fil ‘ 𝐴 )  ↔  ∀ 𝑣  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 19 | 17 3 18 | syl2anc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↾t  𝐴 )  ∈  ( Fil ‘ 𝐴 )  ↔  ∀ 𝑣  ∈  ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣  ∩  𝐴 )  ≠  ∅ ) ) | 
						
							| 20 | 11 19 | bitr4d | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐴  ⊆  𝑌  ∧  𝑃  ∈  𝑌 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ↔  ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } )  ↾t  𝐴 )  ∈  ( Fil ‘ 𝐴 ) ) ) |