Step |
Hyp |
Ref |
Expression |
1 |
|
trnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
trnset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
trnset.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
4 |
|
trnset.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
|
trnset.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
6 |
|
trnset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
7 |
|
trnset.l |
⊢ 𝐿 = ( Dil ‘ 𝐾 ) |
8 |
|
trnset.t |
⊢ 𝑇 = ( Trn ‘ 𝐾 ) |
9 |
|
elex |
⊢ ( 𝐾 ∈ 𝐶 → 𝐾 ∈ V ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Dil ‘ 𝑘 ) = ( Dil ‘ 𝐾 ) ) |
13 |
12 7
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Dil ‘ 𝑘 ) = 𝐿 ) |
14 |
13
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) = ( 𝐿 ‘ 𝑑 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( WAtoms ‘ 𝑘 ) = ( WAtoms ‘ 𝐾 ) ) |
16 |
15 5
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( WAtoms ‘ 𝑘 ) = 𝑊 ) |
17 |
16
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) = ( 𝑊 ‘ 𝑑 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( +𝑃 ‘ 𝑘 ) = ( +𝑃 ‘ 𝐾 ) ) |
19 |
18 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( +𝑃 ‘ 𝑘 ) = + ) |
20 |
19
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) = ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ⊥𝑃 ‘ 𝑘 ) = ( ⊥𝑃 ‘ 𝐾 ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( ⊥𝑃 ‘ 𝑘 ) = ⊥ ) |
23 |
22
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) = ( ⊥ ‘ { 𝑑 } ) ) |
24 |
20 23
|
ineq12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ) |
25 |
19
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) = ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ) |
26 |
25 23
|
ineq12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ↔ ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ) ) |
28 |
17 27
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ↔ ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ) ) |
29 |
17 28
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ↔ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ) ) |
30 |
14 29
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } = { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) |
31 |
11 30
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ) |
32 |
|
df-trnN |
⊢ Trn = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } ) ) |
33 |
31 32 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( Trn ‘ 𝐾 ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ) |
34 |
8 33
|
syl5eq |
⊢ ( 𝐾 ∈ V → 𝑇 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ) |
35 |
9 34
|
syl |
⊢ ( 𝐾 ∈ 𝐶 → 𝑇 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ) |