| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
trnset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 3 |
|
trnset.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 4 |
|
trnset.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 5 |
|
trnset.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
| 6 |
|
trnset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
| 7 |
|
trnset.l |
⊢ 𝐿 = ( Dil ‘ 𝐾 ) |
| 8 |
|
trnset.t |
⊢ 𝑇 = ( Trn ‘ 𝐾 ) |
| 9 |
1 2 3 4 5 6 7 8
|
trnfsetN |
⊢ ( 𝐾 ∈ 𝐵 → 𝑇 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝑇 ‘ 𝐷 ) = ( ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ‘ 𝐷 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝐿 ‘ 𝑑 ) = ( 𝐿 ‘ 𝐷 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑊 ‘ 𝑑 ) = ( 𝑊 ‘ 𝐷 ) ) |
| 13 |
|
sneq |
⊢ ( 𝑑 = 𝐷 → { 𝑑 } = { 𝐷 } ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑑 = 𝐷 → ( ⊥ ‘ { 𝑑 } ) = ( ⊥ ‘ { 𝐷 } ) ) |
| 15 |
14
|
ineq2d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) ) |
| 16 |
14
|
ineq2d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ↔ ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) ) ) |
| 18 |
12 17
|
raleqbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ↔ ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) ) ) |
| 19 |
12 18
|
raleqbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) ↔ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝐷 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) ) ) |
| 20 |
11 19
|
rabeqbidv |
⊢ ( 𝑑 = 𝐷 → { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } = { 𝑓 ∈ ( 𝐿 ‘ 𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝐷 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) } ) |
| 21 |
|
eqid |
⊢ ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) |
| 22 |
|
fvex |
⊢ ( 𝐿 ‘ 𝐷 ) ∈ V |
| 23 |
22
|
rabex |
⊢ { 𝑓 ∈ ( 𝐿 ‘ 𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝐷 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) } ∈ V |
| 24 |
20 21 23
|
fvmpt |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ ( 𝐿 ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝑑 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝑑 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝑑 } ) ) } ) ‘ 𝐷 ) = { 𝑓 ∈ ( 𝐿 ‘ 𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝐷 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) } ) |
| 25 |
10 24
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑇 ‘ 𝐷 ) = { 𝑓 ∈ ( 𝐿 ‘ 𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊 ‘ 𝐷 ) ∀ 𝑟 ∈ ( 𝑊 ‘ 𝐷 ) ( ( 𝑞 + ( 𝑓 ‘ 𝑞 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓 ‘ 𝑟 ) ) ∩ ( ⊥ ‘ { 𝐷 } ) ) } ) |