Metamath Proof Explorer


Theorem trnsetN

Description: The set of translations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses trnset.a 𝐴 = ( Atoms ‘ 𝐾 )
trnset.s 𝑆 = ( PSubSp ‘ 𝐾 )
trnset.p + = ( +𝑃𝐾 )
trnset.o = ( ⊥𝑃𝐾 )
trnset.w 𝑊 = ( WAtoms ‘ 𝐾 )
trnset.m 𝑀 = ( PAut ‘ 𝐾 )
trnset.l 𝐿 = ( Dil ‘ 𝐾 )
trnset.t 𝑇 = ( Trn ‘ 𝐾 )
Assertion trnsetN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑇𝐷 ) = { 𝑓 ∈ ( 𝐿𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) } )

Proof

Step Hyp Ref Expression
1 trnset.a 𝐴 = ( Atoms ‘ 𝐾 )
2 trnset.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 trnset.p + = ( +𝑃𝐾 )
4 trnset.o = ( ⊥𝑃𝐾 )
5 trnset.w 𝑊 = ( WAtoms ‘ 𝐾 )
6 trnset.m 𝑀 = ( PAut ‘ 𝐾 )
7 trnset.l 𝐿 = ( Dil ‘ 𝐾 )
8 trnset.t 𝑇 = ( Trn ‘ 𝐾 )
9 1 2 3 4 5 6 7 8 trnfsetN ( 𝐾𝐵𝑇 = ( 𝑑𝐴 ↦ { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } ) )
10 9 fveq1d ( 𝐾𝐵 → ( 𝑇𝐷 ) = ( ( 𝑑𝐴 ↦ { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } ) ‘ 𝐷 ) )
11 fveq2 ( 𝑑 = 𝐷 → ( 𝐿𝑑 ) = ( 𝐿𝐷 ) )
12 fveq2 ( 𝑑 = 𝐷 → ( 𝑊𝑑 ) = ( 𝑊𝐷 ) )
13 sneq ( 𝑑 = 𝐷 → { 𝑑 } = { 𝐷 } )
14 13 fveq2d ( 𝑑 = 𝐷 → ( ‘ { 𝑑 } ) = ( ‘ { 𝐷 } ) )
15 14 ineq2d ( 𝑑 = 𝐷 → ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) )
16 14 ineq2d ( 𝑑 = 𝐷 → ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) )
17 15 16 eqeq12d ( 𝑑 = 𝐷 → ( ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) ↔ ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) ) )
18 12 17 raleqbidv ( 𝑑 = 𝐷 → ( ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) ↔ ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) ) )
19 12 18 raleqbidv ( 𝑑 = 𝐷 → ( ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) ↔ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) ) )
20 11 19 rabeqbidv ( 𝑑 = 𝐷 → { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } = { 𝑓 ∈ ( 𝐿𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) } )
21 eqid ( 𝑑𝐴 ↦ { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } ) = ( 𝑑𝐴 ↦ { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } )
22 fvex ( 𝐿𝐷 ) ∈ V
23 22 rabex { 𝑓 ∈ ( 𝐿𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) } ∈ V
24 20 21 23 fvmpt ( 𝐷𝐴 → ( ( 𝑑𝐴 ↦ { 𝑓 ∈ ( 𝐿𝑑 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝑑 ) ∀ 𝑟 ∈ ( 𝑊𝑑 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝑑 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝑑 } ) ) } ) ‘ 𝐷 ) = { 𝑓 ∈ ( 𝐿𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) } )
25 10 24 sylan9eq ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑇𝐷 ) = { 𝑓 ∈ ( 𝐿𝐷 ) ∣ ∀ 𝑞 ∈ ( 𝑊𝐷 ) ∀ 𝑟 ∈ ( 𝑊𝐷 ) ( ( 𝑞 + ( 𝑓𝑞 ) ) ∩ ( ‘ { 𝐷 } ) ) = ( ( 𝑟 + ( 𝑓𝑟 ) ) ∩ ( ‘ { 𝐷 } ) ) } )