Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr ω ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) ) |
2 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
3 |
2
|
expcom |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ On → 𝑦 ∈ On ) ) |
4 |
|
limord |
⊢ ( Lim 𝑧 → Ord 𝑧 ) |
5 |
|
ordtr |
⊢ ( Ord 𝑧 → Tr 𝑧 ) |
6 |
|
trel |
⊢ ( Tr 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑧 ) ) |
7 |
4 5 6
|
3syl |
⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑧 ) ) |
8 |
7
|
expd |
⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
9 |
8
|
com12 |
⊢ ( 𝑦 ∈ 𝑥 → ( Lim 𝑧 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
10 |
9
|
a2d |
⊢ ( 𝑦 ∈ 𝑥 → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) → ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
11 |
10
|
alimdv |
⊢ ( 𝑦 ∈ 𝑥 → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) → ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
12 |
3 11
|
anim12d |
⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝑥 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) → ( 𝑦 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) ) |
13 |
|
elom |
⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ) |
14 |
|
elom |
⊢ ( 𝑦 ∈ ω ↔ ( 𝑦 ∈ On ∧ ∀ 𝑧 ( Lim 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
15 |
12 13 14
|
3imtr4g |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ ω → 𝑦 ∈ ω ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) |
17 |
16
|
ax-gen |
⊢ ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω ) → 𝑦 ∈ ω ) |
18 |
1 17
|
mpgbir |
⊢ Tr ω |