Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tron | ⊢ Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 | ⊢ ( Tr On ↔ ∀ 𝑥 ∈ On 𝑥 ⊆ On ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | elon | ⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
| 4 | ordelord | ⊢ ( ( Ord 𝑥 ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) | |
| 5 | 3 4 | sylanb | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 6 | 5 | ex | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → Ord 𝑦 ) ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 7 | elon | ⊢ ( 𝑦 ∈ On ↔ Ord 𝑦 ) |
| 9 | 6 8 | imbitrrdi | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ On ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
| 11 | 1 10 | mprgbir | ⊢ Tr On |