Metamath Proof Explorer


Theorem tron

Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009)

Ref Expression
Assertion tron Tr On

Proof

Step Hyp Ref Expression
1 dftr3 ( Tr On ↔ ∀ 𝑥 ∈ On 𝑥 ⊆ On )
2 vex 𝑥 ∈ V
3 2 elon ( 𝑥 ∈ On ↔ Ord 𝑥 )
4 ordelord ( ( Ord 𝑥𝑦𝑥 ) → Ord 𝑦 )
5 3 4 sylanb ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → Ord 𝑦 )
6 5 ex ( 𝑥 ∈ On → ( 𝑦𝑥 → Ord 𝑦 ) )
7 vex 𝑦 ∈ V
8 7 elon ( 𝑦 ∈ On ↔ Ord 𝑦 )
9 6 8 syl6ibr ( 𝑥 ∈ On → ( 𝑦𝑥𝑦 ∈ On ) )
10 9 ssrdv ( 𝑥 ∈ On → 𝑥 ⊆ On )
11 1 10 mprgbir Tr On