Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trpred | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predep | ⊢ ( 𝑋 ∈ 𝐴 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) |
| 3 | trss | ⊢ ( Tr 𝐴 → ( 𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴 ) ) | |
| 4 | 3 | imp | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
| 5 | sseqin2 | ⊢ ( 𝑋 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝑋 ) = 𝑋 ) | |
| 6 | 4 5 | sylib | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∩ 𝑋 ) = 𝑋 ) |
| 7 | 2 6 | eqtrd | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 ) |