Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | trpred | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep | ⊢ ( 𝑋 ∈ 𝐴 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) | |
2 | 1 | adantl | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) |
3 | trss | ⊢ ( Tr 𝐴 → ( 𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴 ) ) | |
4 | 3 | imp | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ⊆ 𝐴 ) |
5 | sseqin2 | ⊢ ( 𝑋 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝑋 ) = 𝑋 ) | |
6 | 4 5 | sylib | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐴 ∩ 𝑋 ) = 𝑋 ) |
7 | 2 6 | eqtrd | ⊢ ( ( Tr 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 ) |