Metamath Proof Explorer


Theorem trpred

Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)

Ref Expression
Assertion trpred ( ( Tr 𝐴𝑋𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 predep ( 𝑋𝐴 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴𝑋 ) )
2 1 adantl ( ( Tr 𝐴𝑋𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴𝑋 ) )
3 trss ( Tr 𝐴 → ( 𝑋𝐴𝑋𝐴 ) )
4 3 imp ( ( Tr 𝐴𝑋𝐴 ) → 𝑋𝐴 )
5 sseqin2 ( 𝑋𝐴 ↔ ( 𝐴𝑋 ) = 𝑋 )
6 4 5 sylib ( ( Tr 𝐴𝑋𝐴 ) → ( 𝐴𝑋 ) = 𝑋 )
7 2 6 eqtrd ( ( Tr 𝐴𝑋𝐴 ) → Pred ( E , 𝐴 , 𝑋 ) = 𝑋 )