Metamath Proof Explorer


Theorem trrelressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)

Ref Expression
Assertion trrelressn TrRel ( 𝑅 ↾ { 𝐴 } )

Proof

Step Hyp Ref Expression
1 trressn 𝑥𝑦𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 )
2 relres Rel ( 𝑅 ↾ { 𝐴 } )
3 dftrrel3 ( TrRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) )
4 1 2 3 mpbir2an TrRel ( 𝑅 ↾ { 𝐴 } )