Metamath Proof Explorer
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see
ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)
|
|
Ref |
Expression |
|
Assertion |
trrelressn |
⊢ TrRel ( 𝑅 ↾ { 𝐴 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
trressn |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
2 |
|
relres |
⊢ Rel ( 𝑅 ↾ { 𝐴 } ) |
3 |
|
dftrrel3 |
⊢ ( TrRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ TrRel ( 𝑅 ↾ { 𝐴 } ) |