Metamath Proof Explorer


Theorem trrelssd

Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses trrelssd.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
trrelssd.s ( 𝜑𝑆𝑅 )
trrelssd.t ( 𝜑𝑇𝑅 )
Assertion trrelssd ( 𝜑 → ( 𝑆𝑇 ) ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 trrelssd.r ( 𝜑 → ( 𝑅𝑅 ) ⊆ 𝑅 )
2 trrelssd.s ( 𝜑𝑆𝑅 )
3 trrelssd.t ( 𝜑𝑇𝑅 )
4 2 3 coss12d ( 𝜑 → ( 𝑆𝑇 ) ⊆ ( 𝑅𝑅 ) )
5 4 1 sstrd ( 𝜑 → ( 𝑆𝑇 ) ⊆ 𝑅 )