Metamath Proof Explorer
Description: The composition of subclasses of a transitive relation is a subclass of
that relation. (Contributed by RP, 24-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
trrelssd.r |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
|
|
trrelssd.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑅 ) |
|
|
trrelssd.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑅 ) |
|
Assertion |
trrelssd |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ 𝑅 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
trrelssd.r |
⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
2 |
|
trrelssd.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑅 ) |
3 |
|
trrelssd.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑅 ) |
4 |
2 3
|
coss12d |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ ( 𝑅 ∘ 𝑅 ) ) |
5 |
4 1
|
sstrd |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ 𝑅 ) |