Step |
Hyp |
Ref |
Expression |
1 |
|
an3 |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
2 |
|
eqbrb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ) |
3 |
|
eqbrb |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
4 |
2 3
|
anbi12i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) ) |
5 |
|
eqbrb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
6 |
1 4 5
|
3imtr4i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
7 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) ) |
8 |
7
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
9 |
|
brressn |
⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
10 |
9
|
el2v |
⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
11 |
8 10
|
anbi12i |
⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
12 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) ) |
13 |
12
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
14 |
6 11 13
|
3imtr4i |
⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
15 |
14
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
16 |
15
|
ax-gen |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |