Step |
Hyp |
Ref |
Expression |
1 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
2 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
3 |
|
sbcim2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ) ) |
4 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
5 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) ) |
6 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) ) |
7 |
|
imbi13 |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) ) ) |
8 |
4 5 6 7
|
syl3c |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑥 → [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) |
9 |
3 8
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) ) |
10 |
|
pm3.31 |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
11 |
|
pm3.3 |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ) |
12 |
10 11
|
impbii |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
13 |
12
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) ) ↔ [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
14 |
|
pm3.31 |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
15 |
|
pm3.3 |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) |
16 |
14 15
|
impbii |
⊢ ( ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
17 |
9 13 16
|
3bitr3g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
18 |
17
|
albidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
19 |
2 18
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
20 |
19
|
albidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
21 |
1 20
|
syl5bb |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) ) |
22 |
|
dftr2 |
⊢ ( Tr 𝑥 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
23 |
22
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
24 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
25 |
21 23 24
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Tr 𝑥 ↔ Tr 𝐴 ) ) |