| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    𝐴  ∈  𝐵    ▶    𝐴  ∈  𝐵    ) | 
						
							| 2 |  | sbcg | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 3 | 1 2 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )    ) | 
						
							| 4 |  | sbcel2gv | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 5 | 1 4 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝐴 )    ) | 
						
							| 6 |  | sbcel2gv | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 7 | 1 6 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝐴 )    ) | 
						
							| 8 |  | imbi13 | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝐴 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝐴 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑦 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝐴 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝐴 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) ) ) ) ) | 
						
							| 10 | 1 3 5 7 9 | e1111 | ⊢ (    𝐴  ∈  𝐵    ▶    ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )    ) | 
						
							| 11 |  | sbcim2g | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 12 | 1 11 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) ) )    ) | 
						
							| 13 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) ) ) | 
						
							| 14 | 13 | biimprcd | ⊢ ( ( ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑦  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑥  →  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝑥 ) ) )  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) ) ) | 
						
							| 15 | 10 12 14 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )    ) | 
						
							| 16 |  | pm3.31 | ⊢ ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) )  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 17 |  | pm3.3 | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 )  →  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 18 | 16 17 | impbii | ⊢ ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 19 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 20 | 19 | biimprd | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) )  →  ( ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 21 | 15 18 20 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 22 |  | pm3.31 | ⊢ ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 23 |  | pm3.3 | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  →  ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) ) ) | 
						
							| 24 | 22 23 | impbii | ⊢ ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 25 | 24 | ax-gen | ⊢ ∀ 𝑥 ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 26 |  | sbcbi | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 27 | 1 25 26 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )    ) | 
						
							| 28 |  | bitr3 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 29 | 28 | com12 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑧  ∈  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑧  ∈  𝑥 ) )  ↔  [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 30 | 21 27 29 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 31 | 30 | gen11 | ⊢ (    𝐴  ∈  𝐵    ▶    ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 32 |  | albi | ⊢ ( ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 33 | 31 32 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 34 |  | sbcal | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) ) | 
						
							| 36 | 1 35 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )    ) | 
						
							| 37 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  ↔  ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 38 | 37 | biimprcd | ⊢ ( ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 39 | 33 36 38 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 40 | 39 | gen11 | ⊢ (    𝐴  ∈  𝐵    ▶    ∀ 𝑧 ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 41 |  | albi | ⊢ ( ∀ 𝑧 ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 42 | 40 41 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 43 |  | sbcal | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) ) | 
						
							| 45 | 1 44 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )    ) | 
						
							| 46 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  ↔  ( ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 47 | 46 | biimprcd | ⊢ ( ( ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 [ 𝐴  /  𝑥 ] ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 48 | 42 45 47 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )    ) | 
						
							| 49 |  | dftr2 | ⊢ ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 50 |  | biantr | ⊢ ( ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  ∧  ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  Tr  𝐴 ) ) | 
						
							| 51 | 50 | ex | ⊢ ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  Tr  𝐴 ) ) ) | 
						
							| 52 | 48 49 51 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  Tr  𝐴 )    ) | 
						
							| 53 |  | dftr2 | ⊢ ( Tr  𝑥  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 54 | 53 | ax-gen | ⊢ ∀ 𝑥 ( Tr  𝑥  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) | 
						
							| 55 |  | sbcbi | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( Tr  𝑥  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 56 | 1 54 55 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )    ) | 
						
							| 57 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  Tr  𝐴 )  ↔  ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  Tr  𝐴 ) ) ) | 
						
							| 58 | 57 | biimprcd | ⊢ ( ( [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 )  ↔  Tr  𝐴 )  →  ( ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝑥 )  →  𝑧  ∈  𝑥 ) )  →  ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  Tr  𝐴 ) ) ) | 
						
							| 59 | 52 56 58 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  Tr  𝐴 )    ) | 
						
							| 60 | 59 | in1 | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] Tr  𝑥  ↔  Tr  𝐴 ) ) |