Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994) (Proof shortened by JJ, 26-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | trss | ⊢ ( Tr 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ) | |
2 | sseq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
3 | 2 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |
4 | 1 3 | sylbi | ⊢ ( Tr 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |