Metamath Proof Explorer


Theorem trssord

Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)

Ref Expression
Assertion trssord ( ( Tr 𝐴𝐴𝐵 ∧ Ord 𝐵 ) → Ord 𝐴 )

Proof

Step Hyp Ref Expression
1 wess ( 𝐴𝐵 → ( E We 𝐵 → E We 𝐴 ) )
2 ordwe ( Ord 𝐵 → E We 𝐵 )
3 1 2 impel ( ( 𝐴𝐵 ∧ Ord 𝐵 ) → E We 𝐴 )
4 3 anim2i ( ( Tr 𝐴 ∧ ( 𝐴𝐵 ∧ Ord 𝐵 ) ) → ( Tr 𝐴 ∧ E We 𝐴 ) )
5 4 3impb ( ( Tr 𝐴𝐴𝐵 ∧ Ord 𝐵 ) → ( Tr 𝐴 ∧ E We 𝐴 ) )
6 df-ord ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) )
7 5 6 sylibr ( ( Tr 𝐴𝐴𝐵 ∧ Ord 𝐵 ) → Ord 𝐴 )