Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | trssord | ⊢ ( ( Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) → Ord 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess | ⊢ ( 𝐴 ⊆ 𝐵 → ( E We 𝐵 → E We 𝐴 ) ) | |
2 | ordwe | ⊢ ( Ord 𝐵 → E We 𝐵 ) | |
3 | 1 2 | impel | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) → E We 𝐴 ) |
4 | 3 | anim2i | ⊢ ( ( Tr 𝐴 ∧ ( 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) ) → ( Tr 𝐴 ∧ E We 𝐴 ) ) |
5 | 4 | 3impb | ⊢ ( ( Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) → ( Tr 𝐴 ∧ E We 𝐴 ) ) |
6 | df-ord | ⊢ ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) ) | |
7 | 5 6 | sylibr | ⊢ ( ( Tr 𝐴 ∧ 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) → Ord 𝐴 ) |