Metamath Proof Explorer


Theorem trsuc

Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion trsuc ( ( Tr 𝐴 ∧ suc 𝐵𝐴 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 trel ( Tr 𝐴 → ( ( 𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴 ) → 𝐵𝐴 ) )
2 sssucid 𝐵 ⊆ suc 𝐵
3 ssexg ( ( 𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴 ) → 𝐵 ∈ V )
4 2 3 mpan ( suc 𝐵𝐴𝐵 ∈ V )
5 sucidg ( 𝐵 ∈ V → 𝐵 ∈ suc 𝐵 )
6 4 5 syl ( suc 𝐵𝐴𝐵 ∈ suc 𝐵 )
7 6 ancri ( suc 𝐵𝐴 → ( 𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴 ) )
8 1 7 impel ( ( Tr 𝐴 ∧ suc 𝐵𝐴 ) → 𝐵𝐴 )