Metamath Proof Explorer


Theorem trubifal

Description: A <-> identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion trubifal ( ( ⊤ ↔ ⊥ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 bicom ( ( ⊤ ↔ ⊥ ) ↔ ( ⊥ ↔ ⊤ ) )
2 falbitru ( ( ⊥ ↔ ⊤ ) ↔ ⊥ )
3 1 2 bitri ( ( ⊤ ↔ ⊥ ) ↔ ⊥ )