Metamath Proof Explorer


Theorem trunanfal

Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion trunanfal ( ( ⊤ ⊼ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 df-nan ( ( ⊤ ⊼ ⊥ ) ↔ ¬ ( ⊤ ∧ ⊥ ) )
2 truanfal ( ( ⊤ ∧ ⊥ ) ↔ ⊥ )
3 1 2 xchbinx ( ( ⊤ ⊼ ⊥ ) ↔ ¬ ⊥ )
4 notfal ( ¬ ⊥ ↔ ⊤ )
5 3 4 bitri ( ( ⊤ ⊼ ⊥ ) ↔ ⊤ )