Metamath Proof Explorer


Theorem trunantru

Description: A -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion trunantru ( ( ⊤ ⊼ ⊤ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 nannot ( ¬ ⊤ ↔ ( ⊤ ⊼ ⊤ ) )
2 nottru ( ¬ ⊤ ↔ ⊥ )
3 1 2 bitr3i ( ( ⊤ ⊼ ⊤ ) ↔ ⊥ )