Step |
Hyp |
Ref |
Expression |
1 |
|
idn2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ) |
2 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑦 ∈ ∪ 𝐴 ) |
3 |
1 2
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑦 ∈ ∪ 𝐴 ) |
4 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
5 |
4
|
biimpi |
⊢ ( 𝑦 ∈ ∪ 𝐴 → ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
6 |
3 5
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
8 |
1 7
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
9 |
|
idn3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ) |
10 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑦 ∈ 𝑞 ) |
11 |
9 10
|
e3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑦 ∈ 𝑞 ) |
12 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
13 |
9 12
|
e3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑞 ∈ 𝐴 ) |
14 |
|
idn1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ) |
15 |
|
rspsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
16 |
15
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → ( 𝑞 ∈ 𝐴 → [ 𝑞 / 𝑥 ] Tr 𝑥 ) ) |
17 |
14 13 16
|
e13 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ [ 𝑞 / 𝑥 ] Tr 𝑥 ) |
18 |
|
trsbc |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 ↔ Tr 𝑞 ) ) |
19 |
18
|
biimpd |
⊢ ( 𝑞 ∈ 𝐴 → ( [ 𝑞 / 𝑥 ] Tr 𝑥 → Tr 𝑞 ) ) |
20 |
13 17 19
|
e33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ Tr 𝑞 ) |
21 |
|
trel |
⊢ ( Tr 𝑞 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑞 ) → 𝑧 ∈ 𝑞 ) ) |
22 |
21
|
expdcom |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝑞 → ( Tr 𝑞 → 𝑧 ∈ 𝑞 ) ) ) |
23 |
8 11 20 22
|
e233 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝑞 ) |
24 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) |
25 |
24
|
ex |
⊢ ( 𝑧 ∈ 𝑞 → ( 𝑞 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴 ) ) |
26 |
23 13 25
|
e33 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) , ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) ▶ 𝑧 ∈ ∪ 𝐴 ) |
27 |
26
|
in3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
28 |
27
|
gen21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
29 |
|
19.23v |
⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
30 |
29
|
biimpi |
⊢ ( ∀ 𝑞 ( ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
31 |
28 30
|
e2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
32 |
|
pm2.27 |
⊢ ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → ( ( ∃ 𝑞 ( 𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
33 |
6 31 32
|
e22 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) ▶ 𝑧 ∈ ∪ 𝐴 ) |
34 |
33
|
in2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
35 |
34
|
gen12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
36 |
|
dftr2 |
⊢ ( Tr ∪ 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) ) |
37 |
36
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) → Tr ∪ 𝐴 ) |
38 |
35 37
|
e1a |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 ▶ Tr ∪ 𝐴 ) |
39 |
38
|
in1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |