Metamath Proof Explorer


Theorem truxorfal

Description: A \/_ identity. (Contributed by David A. Wheeler, 8-May-2015)

Ref Expression
Assertion truxorfal ( ( ⊤ ⊻ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 df-xor ( ( ⊤ ⊻ ⊥ ) ↔ ¬ ( ⊤ ↔ ⊥ ) )
2 trubifal ( ( ⊤ ↔ ⊥ ) ↔ ⊥ )
3 1 2 xchbinx ( ( ⊤ ⊻ ⊥ ) ↔ ¬ ⊥ )
4 notfal ( ¬ ⊥ ↔ ⊤ )
5 3 4 bitri ( ( ⊤ ⊻ ⊥ ) ↔ ⊤ )