Metamath Proof Explorer


Theorem truxortru

Description: A \/_ identity. (Contributed by David A. Wheeler, 8-May-2015)

Ref Expression
Assertion truxortru ( ( ⊤ ⊻ ⊤ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 df-xor ( ( ⊤ ⊻ ⊤ ) ↔ ¬ ( ⊤ ↔ ⊤ ) )
2 trubitru ( ( ⊤ ↔ ⊤ ) ↔ ⊤ )
3 1 2 xchbinx ( ( ⊤ ⊻ ⊤ ) ↔ ¬ ⊤ )
4 nottru ( ¬ ⊤ ↔ ⊥ )
5 3 4 bitri ( ( ⊤ ⊻ ⊤ ) ↔ ⊥ )