Metamath Proof Explorer


Theorem tsk1

Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tsk1 ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o𝑇 )

Proof

Step Hyp Ref Expression
1 df1o2 1o = { ∅ }
2 tsk0 ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∅ ∈ 𝑇 )
3 tsksn ( ( 𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇 ) → { ∅ } ∈ 𝑇 )
4 2 3 syldan ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → { ∅ } ∈ 𝑇 )
5 1 4 eqeltrid ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o𝑇 )