Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | tsk1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | ⊢ 1o = { ∅ } | |
2 | tsk0 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∅ ∈ 𝑇 ) | |
3 | tsksn | ⊢ ( ( 𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇 ) → { ∅ } ∈ 𝑇 ) | |
4 | 2 3 | syldan | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → { ∅ } ∈ 𝑇 ) |
5 | 1 4 | eqeltrid | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o ∈ 𝑇 ) |