Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | tsk2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 2o ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsk1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o ∈ 𝑇 ) | |
2 | df-2o | ⊢ 2o = suc 1o | |
3 | 1on | ⊢ 1o ∈ On | |
4 | tsksuc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o ∈ 𝑇 ) → suc 1o ∈ 𝑇 ) | |
5 | 3 4 | mp3an2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 1o ∈ 𝑇 ) → suc 1o ∈ 𝑇 ) |
6 | 2 5 | eqeltrid | ⊢ ( ( 𝑇 ∈ Tarski ∧ 1o ∈ 𝑇 ) → 2o ∈ 𝑇 ) |
7 | 1 6 | syldan | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 2o ∈ 𝑇 ) |