Metamath Proof Explorer


Theorem tsk2

Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsk2 ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 2o𝑇 )

Proof

Step Hyp Ref Expression
1 tsk1 ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 1o𝑇 )
2 df-2o 2o = suc 1o
3 1on 1o ∈ On
4 tsksuc ( ( 𝑇 ∈ Tarski ∧ 1o ∈ On ∧ 1o𝑇 ) → suc 1o𝑇 )
5 3 4 mp3an2 ( ( 𝑇 ∈ Tarski ∧ 1o𝑇 ) → suc 1o𝑇 )
6 2 5 eqeltrid ( ( 𝑇 ∈ Tarski ∧ 1o𝑇 ) → 2o𝑇 )
7 1 6 syldan ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 2o𝑇 )