Metamath Proof Explorer


Theorem tsken

Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsken ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐴𝑇𝐴𝑇 ) )

Proof

Step Hyp Ref Expression
1 eltskg ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑥𝑇 ( 𝒫 𝑥𝑇 ∧ ∃ 𝑦𝑇 𝒫 𝑥𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥𝑇𝑥𝑇 ) ) ) )
2 1 ibi ( 𝑇 ∈ Tarski → ( ∀ 𝑥𝑇 ( 𝒫 𝑥𝑇 ∧ ∃ 𝑦𝑇 𝒫 𝑥𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥𝑇𝑥𝑇 ) ) )
3 2 simprd ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥𝑇𝑥𝑇 ) )
4 elpw2g ( 𝑇 ∈ Tarski → ( 𝐴 ∈ 𝒫 𝑇𝐴𝑇 ) )
5 4 biimpar ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴 ∈ 𝒫 𝑇 )
6 breq1 ( 𝑥 = 𝐴 → ( 𝑥𝑇𝐴𝑇 ) )
7 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑇𝐴𝑇 ) )
8 6 7 orbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝑇𝑥𝑇 ) ↔ ( 𝐴𝑇𝐴𝑇 ) ) )
9 8 rspccva ( ( ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥𝑇𝑥𝑇 ) ∧ 𝐴 ∈ 𝒫 𝑇 ) → ( 𝐴𝑇𝐴𝑇 ) )
10 3 5 9 syl2an2r ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐴𝑇𝐴𝑇 ) )