Step |
Hyp |
Ref |
Expression |
1 |
|
eltskg |
⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ ∃ 𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) |
3 |
2
|
simprd |
⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) |
4 |
|
elpw2g |
⊢ ( 𝑇 ∈ Tarski → ( 𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇 ) ) |
5 |
4
|
biimpar |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ) → 𝐴 ∈ 𝒫 𝑇 ) |
6 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇 ) ) |
8 |
6 7
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ↔ ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) ) |
9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ∧ 𝐴 ∈ 𝒫 𝑇 ) → ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) |
10 |
3 5 9
|
syl2an2r |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ) → ( 𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇 ) ) |