Metamath Proof Explorer


Theorem tskint

Description: The intersection of an element of a transitive Tarski class is an element of the class. (Contributed by FL, 17-Apr-2011) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskint ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐴 ≠ ∅ ) → 𝐴𝑇 )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐴 ≠ ∅ ) → 𝑇 ∈ Tarski )
2 tskuni ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇 ) → 𝐴𝑇 )
3 2 3expa ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇 ) → 𝐴𝑇 )
4 3 3adant3 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐴 ≠ ∅ ) → 𝐴𝑇 )
5 intssuni ( 𝐴 ≠ ∅ → 𝐴 𝐴 )
6 5 3ad2ant3 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐴 ≠ ∅ ) → 𝐴 𝐴 )
7 tskss ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 𝐴 𝐴 ) → 𝐴𝑇 )
8 1 4 6 7 syl3anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐴 ≠ ∅ ) → 𝐴𝑇 )