Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → 𝑇 ∈ Tarski ) |
2 |
|
tskuni |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |
4 |
3
|
3adant3 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝑇 ) |
5 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
7 |
|
tskss |
⊢ ( ( 𝑇 ∈ Tarski ∧ ∪ 𝐴 ∈ 𝑇 ∧ ∩ 𝐴 ⊆ ∪ 𝐴 ) → ∩ 𝐴 ∈ 𝑇 ) |
8 |
1 4 6 7
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝑇 ) |