Metamath Proof Explorer


Theorem tskord

Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion tskord ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → 𝐴𝑇 )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑥 = 𝑦 → ( 𝑥𝑇𝑦𝑇 ) )
2 1 anbi2d ( 𝑥 = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) ) )
3 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝑇𝑦𝑇 ) )
4 2 3 imbi12d ( 𝑥 = 𝑦 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝑥𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) ) )
5 breq1 ( 𝑥 = 𝐴 → ( 𝑥𝑇𝐴𝑇 ) )
6 5 anbi2d ( 𝑥 = 𝐴 → ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) ) )
7 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑇𝐴𝑇 ) )
8 6 7 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝑥𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 ) ) )
9 simplrl ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) ∧ 𝑦𝑥 ) → 𝑇 ∈ Tarski )
10 onelss ( 𝑥 ∈ On → ( 𝑦𝑥𝑦𝑥 ) )
11 ssdomg ( 𝑥 ∈ On → ( 𝑦𝑥𝑦𝑥 ) )
12 10 11 syld ( 𝑥 ∈ On → ( 𝑦𝑥𝑦𝑥 ) )
13 12 imp ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦𝑥 )
14 13 adantlr ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
15 simplrr ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) ∧ 𝑦𝑥 ) → 𝑥𝑇 )
16 domsdomtr ( ( 𝑦𝑥𝑥𝑇 ) → 𝑦𝑇 )
17 14 15 16 syl2anc ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) ∧ 𝑦𝑥 ) → 𝑦𝑇 )
18 pm2.27 ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → 𝑦𝑇 ) )
19 9 17 18 syl2anc ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) ∧ 𝑦𝑥 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → 𝑦𝑇 ) )
20 19 ralimdva ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) → ( ∀ 𝑦𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → ∀ 𝑦𝑥 𝑦𝑇 ) )
21 dfss3 ( 𝑥𝑇 ↔ ∀ 𝑦𝑥 𝑦𝑇 )
22 tskssel ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇 ) → 𝑥𝑇 )
23 22 3exp ( 𝑇 ∈ Tarski → ( 𝑥𝑇 → ( 𝑥𝑇𝑥𝑇 ) ) )
24 21 23 syl5bir ( 𝑇 ∈ Tarski → ( ∀ 𝑦𝑥 𝑦𝑇 → ( 𝑥𝑇𝑥𝑇 ) ) )
25 24 com23 ( 𝑇 ∈ Tarski → ( 𝑥𝑇 → ( ∀ 𝑦𝑥 𝑦𝑇𝑥𝑇 ) ) )
26 25 imp ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → ( ∀ 𝑦𝑥 𝑦𝑇𝑥𝑇 ) )
27 26 adantl ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) → ( ∀ 𝑦𝑥 𝑦𝑇𝑥𝑇 ) )
28 20 27 syld ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ) → ( ∀ 𝑦𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → 𝑥𝑇 ) )
29 28 ex ( 𝑥 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → ( ∀ 𝑦𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → 𝑥𝑇 ) ) )
30 29 com23 ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇 ) → 𝑦𝑇 ) → ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝑥𝑇 ) ) )
31 4 8 30 tfis3 ( 𝐴 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 ) )
32 31 3impib ( ( 𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 )
33 32 3com12 ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → 𝐴𝑇 )