| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ 𝑇 ↔ 𝑦 ≺ 𝑇 ) ) |
| 2 |
1
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) ) ) |
| 3 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 𝑇 ↔ 𝐴 ≺ 𝑇 ) ) |
| 6 |
5
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ↔ ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) ) ) |
| 7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) ) ) |
| 9 |
|
simplrl |
⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑇 ∈ Tarski ) |
| 10 |
|
onelss |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 11 |
|
ssdomg |
⊢ ( 𝑥 ∈ On → ( 𝑦 ⊆ 𝑥 → 𝑦 ≼ 𝑥 ) ) |
| 12 |
10 11
|
syld |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ≼ 𝑥 ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≼ 𝑥 ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≼ 𝑥 ) |
| 15 |
|
simplrr |
⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ≺ 𝑇 ) |
| 16 |
|
domsdomtr |
⊢ ( ( 𝑦 ≼ 𝑥 ∧ 𝑥 ≺ 𝑇 ) → 𝑦 ≺ 𝑇 ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≺ 𝑇 ) |
| 18 |
|
pm2.27 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) |
| 19 |
9 17 18
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) ) |
| 20 |
19
|
ralimdva |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 ) ) |
| 21 |
|
dfss3 |
⊢ ( 𝑥 ⊆ 𝑇 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 ) |
| 22 |
|
tskssel |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ⊆ 𝑇 ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
| 23 |
22
|
3exp |
⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ⊆ 𝑇 → ( 𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 24 |
21 23
|
biimtrrid |
⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → ( 𝑥 ≺ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 25 |
24
|
com23 |
⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ≺ 𝑇 → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑇 → 𝑥 ∈ 𝑇 ) ) |
| 28 |
20 27
|
syld |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) |
| 29 |
28
|
ex |
⊢ ( 𝑥 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) ) |
| 30 |
29
|
com23 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑇 ∈ Tarski ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) → ( ( 𝑇 ∈ Tarski ∧ 𝑥 ≺ 𝑇 ) → 𝑥 ∈ 𝑇 ) ) ) |
| 31 |
4 8 30
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( ( 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) ) |
| 32 |
31
|
3impib |
⊢ ( ( 𝐴 ∈ On ∧ 𝑇 ∈ Tarski ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
| 33 |
32
|
3com12 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ≺ 𝑇 ) → 𝐴 ∈ 𝑇 ) |