Metamath Proof Explorer


Theorem tskpr

Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskpr ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → 𝑇 ∈ Tarski )
2 prssi ( ( 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 )
3 2 3adant1 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 )
4 prfi { 𝐴 , 𝐵 } ∈ Fin
5 isfinite ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω )
6 4 5 mpbi { 𝐴 , 𝐵 } ≺ ω
7 ne0i ( 𝐴𝑇𝑇 ≠ ∅ )
8 tskinf ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 )
9 7 8 sylan2 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ω ≼ 𝑇 )
10 sdomdomtr ( ( { 𝐴 , 𝐵 } ≺ ω ∧ ω ≼ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 )
11 6 9 10 sylancr ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 )
12 11 3adant3 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 )
13 tskssel ( ( 𝑇 ∈ Tarski ∧ { 𝐴 , 𝐵 } ⊆ 𝑇 ∧ { 𝐴 , 𝐵 } ≺ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )
14 1 3 12 13 syl3anc ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )