Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) |
2 |
|
prssi |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ⊆ 𝑇 ) |
4 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
5 |
|
isfinite |
⊢ ( { 𝐴 , 𝐵 } ∈ Fin ↔ { 𝐴 , 𝐵 } ≺ ω ) |
6 |
4 5
|
mpbi |
⊢ { 𝐴 , 𝐵 } ≺ ω |
7 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑇 → 𝑇 ≠ ∅ ) |
8 |
|
tskinf |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ω ≼ 𝑇 ) |
10 |
|
sdomdomtr |
⊢ ( ( { 𝐴 , 𝐵 } ≺ ω ∧ ω ≼ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) |
11 |
6 9 10
|
sylancr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ≺ 𝑇 ) |
13 |
|
tskssel |
⊢ ( ( 𝑇 ∈ Tarski ∧ { 𝐴 , 𝐵 } ⊆ 𝑇 ∧ { 𝐴 , 𝐵 } ≺ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |
14 |
1 3 12 13
|
syl3anc |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |