Step |
Hyp |
Ref |
Expression |
1 |
|
eltsk2g |
⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝑇 ∈ Tarski → ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑇 ( 𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇 ) ) ) |
3 |
2
|
simpld |
⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) ) |
4 |
|
simpr |
⊢ ( ( 𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ) → ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ) |
6 |
3 5
|
syl |
⊢ ( 𝑇 ∈ Tarski → ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ) |
7 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ 𝑇 ↔ 𝒫 𝐴 ∈ 𝑇 ) ) |
9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
10 |
6 9
|
sylan |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |