Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑇 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) |
7 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
8 |
|
tsk0 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∅ ∈ 𝑇 ) |
9 |
7 8
|
eqeltrid |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ ∅ ) ∈ 𝑇 ) |
10 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) |
11 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
12 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ↔ 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) ) |
15 |
10 14
|
syl5ibr |
⊢ ( 𝑦 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) |
16 |
15
|
expd |
⊢ ( 𝑦 ∈ ω → ( 𝑇 ∈ Tarski → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) ) |
17 |
16
|
adantrd |
⊢ ( 𝑦 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑇 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑇 ) ) ) |
18 |
2 4 6 9 17
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ) ) |
19 |
|
eleq1 |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) |
20 |
19
|
imbi2d |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑇 ) ↔ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) ) |
21 |
18 20
|
syl5ibcom |
⊢ ( 𝑥 ∈ ω → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) ) |
22 |
21
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑦 ∈ 𝑇 ) ) |
23 |
|
r1fnon |
⊢ 𝑅1 Fn On |
24 |
|
fnfun |
⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) |
25 |
23 24
|
ax-mp |
⊢ Fun 𝑅1 |
26 |
|
fvelima |
⊢ ( ( Fun 𝑅1 ∧ 𝑦 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
27 |
25 26
|
mpan |
⊢ ( 𝑦 ∈ ( 𝑅1 “ ω ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
28 |
22 27
|
syl11 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑦 ∈ ( 𝑅1 “ ω ) → 𝑦 ∈ 𝑇 ) ) |
29 |
28
|
ssrdv |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) |