Step |
Hyp |
Ref |
Expression |
1 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦 ∈ 𝑥 ) |
2 |
|
r1fnon |
⊢ 𝑅1 Fn On |
3 |
|
fnfun |
⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) |
4 |
2 3
|
ax-mp |
⊢ Fun 𝑅1 |
5 |
|
fvelima |
⊢ ( ( Fun 𝑅1 ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 ) |
6 |
4 5
|
mpan |
⊢ ( 𝑥 ∈ ( 𝑅1 “ ω ) → ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 ) |
7 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝑦 ) |
8 |
|
treq |
⊢ ( ( 𝑅1 ‘ 𝑦 ) = 𝑥 → ( Tr ( 𝑅1 ‘ 𝑦 ) ↔ Tr 𝑥 ) ) |
9 |
7 8
|
mpbii |
⊢ ( ( 𝑅1 ‘ 𝑦 ) = 𝑥 → Tr 𝑥 ) |
10 |
9
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ ω ( 𝑅1 ‘ 𝑦 ) = 𝑥 → Tr 𝑥 ) |
11 |
|
trss |
⊢ ( Tr 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
12 |
6 10 11
|
3syl |
⊢ ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
14 |
|
tskr1om |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) |
15 |
14
|
sseld |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → 𝑥 ∈ 𝑇 ) ) |
16 |
|
tskss |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ 𝑇 ) |
17 |
16
|
3exp |
⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ∈ 𝑇 → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ 𝑇 → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
19 |
15 18
|
syld |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
21 |
13 20
|
syld |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
22 |
21
|
rexlimdva |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑇 ) ) |
23 |
1 22
|
syl5bi |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑦 ∈ ∪ ( 𝑅1 “ ω ) → 𝑦 ∈ 𝑇 ) ) |
24 |
23
|
ssrdv |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ∪ ( 𝑅1 “ ω ) ⊆ 𝑇 ) |