Metamath Proof Explorer


Theorem tskr1om2

Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by NM, 22-Feb-2011)

Ref Expression
Assertion tskr1om2 ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 )

Proof

Step Hyp Ref Expression
1 eluni2 ( 𝑦 ( 𝑅1 “ ω ) ↔ ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦𝑥 )
2 r1fnon 𝑅1 Fn On
3 fnfun ( 𝑅1 Fn On → Fun 𝑅1 )
4 2 3 ax-mp Fun 𝑅1
5 fvelima ( ( Fun 𝑅1𝑥 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑦 ∈ ω ( 𝑅1𝑦 ) = 𝑥 )
6 4 5 mpan ( 𝑥 ∈ ( 𝑅1 “ ω ) → ∃ 𝑦 ∈ ω ( 𝑅1𝑦 ) = 𝑥 )
7 r1tr Tr ( 𝑅1𝑦 )
8 treq ( ( 𝑅1𝑦 ) = 𝑥 → ( Tr ( 𝑅1𝑦 ) ↔ Tr 𝑥 ) )
9 7 8 mpbii ( ( 𝑅1𝑦 ) = 𝑥 → Tr 𝑥 )
10 9 rexlimivw ( ∃ 𝑦 ∈ ω ( 𝑅1𝑦 ) = 𝑥 → Tr 𝑥 )
11 trss ( Tr 𝑥 → ( 𝑦𝑥𝑦𝑥 ) )
12 6 10 11 3syl ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦𝑥𝑦𝑥 ) )
13 12 adantl ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦𝑥𝑦𝑥 ) )
14 tskr1om ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 )
15 14 sseld ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → 𝑥𝑇 ) )
16 tskss ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥 ) → 𝑦𝑇 )
17 16 3exp ( 𝑇 ∈ Tarski → ( 𝑥𝑇 → ( 𝑦𝑥𝑦𝑇 ) ) )
18 17 adantr ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥𝑇 → ( 𝑦𝑥𝑦𝑇 ) ) )
19 15 18 syld ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑅1 “ ω ) → ( 𝑦𝑥𝑦𝑇 ) ) )
20 19 imp ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦𝑥𝑦𝑇 ) )
21 13 20 syld ( ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ ( 𝑅1 “ ω ) ) → ( 𝑦𝑥𝑦𝑇 ) )
22 21 rexlimdva ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( ∃ 𝑥 ∈ ( 𝑅1 “ ω ) 𝑦𝑥𝑦𝑇 ) )
23 1 22 syl5bi ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑦 ( 𝑅1 “ ω ) → 𝑦𝑇 ) )
24 23 ssrdv ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 )