Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsksdom | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | canth2g | ⊢ ( 𝐴 ∈ 𝑇 → 𝐴 ≺ 𝒫 𝐴 ) | |
| 2 | simpl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) | |
| 3 | tskpwss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) | |
| 4 | ssdomg | ⊢ ( 𝑇 ∈ Tarski → ( 𝒫 𝐴 ⊆ 𝑇 → 𝒫 𝐴 ≼ 𝑇 ) ) | |
| 5 | 2 3 4 | sylc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ≼ 𝑇 ) | 
| 6 | sdomdomtr | ⊢ ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝑇 ) → 𝐴 ≺ 𝑇 ) | |
| 7 | 1 5 6 | syl2an2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) |