Metamath Proof Explorer


Theorem tsksdom

Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tsksdom ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 )

Proof

Step Hyp Ref Expression
1 canth2g ( 𝐴𝑇𝐴 ≺ 𝒫 𝐴 )
2 simpl ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝑇 ∈ Tarski )
3 tskpwss ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
4 ssdomg ( 𝑇 ∈ Tarski → ( 𝒫 𝐴𝑇 → 𝒫 𝐴𝑇 ) )
5 2 3 4 sylc ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
6 sdomdomtr ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝑇 ) → 𝐴𝑇 )
7 1 5 6 syl2an2 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 )