Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tsksdom | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth2g | ⊢ ( 𝐴 ∈ 𝑇 → 𝐴 ≺ 𝒫 𝐴 ) | |
2 | simpl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) | |
3 | tskpwss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) | |
4 | ssdomg | ⊢ ( 𝑇 ∈ Tarski → ( 𝒫 𝐴 ⊆ 𝑇 → 𝒫 𝐴 ≼ 𝑇 ) ) | |
5 | 2 3 4 | sylc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ≼ 𝑇 ) |
6 | sdomdomtr | ⊢ ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ 𝑇 ) → 𝐴 ≺ 𝑇 ) | |
7 | 1 5 6 | syl2an2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) |