Metamath Proof Explorer


Theorem tsksn

Description: A singleton of an element of a Tarski class belongs to the class. JFM CLASSES2 th. 2 (partly). (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tsksn ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → { 𝐴 } ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 tskpw ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
2 snsspw { 𝐴 } ⊆ 𝒫 𝐴
3 tskss ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ { 𝐴 } ⊆ 𝒫 𝐴 ) → { 𝐴 } ∈ 𝑇 )
4 2 3 mp3an3 ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ) → { 𝐴 } ∈ 𝑇 )
5 1 4 syldan ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → { 𝐴 } ∈ 𝑇 )