Metamath Proof Explorer


Theorem tskss

Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tskss ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴 ) → 𝐵𝑇 )

Proof

Step Hyp Ref Expression
1 elpw2g ( 𝐴𝑇 → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
2 1 adantl ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
3 tskpwss ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
4 3 sseld ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝑇 ) )
5 2 4 sylbird ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐵𝐴𝐵𝑇 ) )
6 5 3impia ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴 ) → 𝐵𝑇 )