Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 18-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g | ⊢ ( 𝐴 ∈ 𝑇 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
2 | 1 | adantl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
3 | tskpwss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ⊆ 𝑇 ) | |
4 | 3 | sseld | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( 𝐵 ∈ 𝒫 𝐴 → 𝐵 ∈ 𝑇 ) ) |
5 | 2 4 | sylbird | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝑇 ) ) |
6 | 5 | 3impia | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝑇 ) |