Metamath Proof Explorer


Theorem tskssel

Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskssel ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇 ) → 𝐴𝑇 )

Proof

Step Hyp Ref Expression
1 sdomnen ( 𝐴𝑇 → ¬ 𝐴𝑇 )
2 1 3ad2ant3 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇 ) → ¬ 𝐴𝑇 )
3 tsken ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → ( 𝐴𝑇𝐴𝑇 ) )
4 3 3adant3 ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇 ) → ( 𝐴𝑇𝐴𝑇 ) )
5 4 ord ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇 ) → ( ¬ 𝐴𝑇𝐴𝑇 ) )
6 2 5 mpd ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇 ) → 𝐴𝑇 )